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Local analysis of near fields in acoustic scattering
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Abstract

We compute near fields using boundary integral
equation methods for 2D acoustic scattering by
an obstacle with an analytic boundary. Accu-
rate computation of near fields is needed for op-
tical scattering by nanostructures and for other
related problems. A classical method to approx-
imate the solution everywhere consists of using
the same quadrature rule (Nyström method)
used to solve the underlying boundary integral
equation. It is established that this method in-
curs an O(1) error for a fixed number of quadra-
ture points. Our goal is, for a fixed number
of quadrature points and without using high-
order Nyström methods, to develop a method
to address this O(1) error. Similar to numerical
method for approximating singular integrals, we
subtract from the associated kernel the asymp-
totic expansion that captures the nearly singu-
lar behavior.
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1 Problem setting

We consider the following scattering problem by
a sound-soft obstacle D ⊂ R2 with ∂D an ana-
lytic, closed curve:

∆u+ k2u = 0 in R2 \D, (1a)

u = f on ∂D, (1b)

∂ru− iku = o(r−1/2), r →∞, (1c)

where k denotes the wavenumber and f is an
analytic function that gives the field incident on
the obstacle. The solution of (1) may be rep-
resented as a single- and double-layer potential
(see [5]): for all x ∈ R2\D̄,

u(x) =

∫
∂D

[
∂nyG(x, y)− ikG(x, y)

]
µ(y)dσy.

(2)
The fundamental solution of (1a) is

G(x, y) =
i

4
H

(1)
0 (k|x− y|), (3)

where H
(1)
0 is the Hankel function of first kind,

and the density µ satisfies the boundary integral
equation for all y′ ∈ ∂D,

1

2
µ(y′) +

∫
∂D

∂nyG(y′, y)µ(y)dσy

− ik
∫
∂D

G(y′, y)µ(y)dσy = f(y′).

(4)

Since ∂D is a closed, analytic curve, and G ex-
hibits a log-singular behavior, (4) can be solved
numerically with spectral accuracy using Kress
Nyström method [5, Chapter 12] (for Laplace
we consider the periodic trapezoid rule [1]). Us-
ing the same Nyström method to evaluate (2)
incurs an O(1) error for points in R2 \ D that
are close to ∂D. This is due to the fact that
the kernel K := ∂nyG − ikG is nearly singu-
lar, in the sense that K is sharply peaked when
|x − y| → 0+, and will not be well resolved for
fixed quadrature points. In fact, the error made
in evaluating (2) exhibits a boundary layer with
thickness O(1/N) where N is the number of
quadrature points, leading to a O(1) error as x
approaches ∂D [1]. It is necessary to accurately
predict these near fields for optical scattering
by nanostructures, for instance in plasmonics.

2 Local analysis and numerical results

To address the O(1) error associated with the
near-field evaluation problem, we treat nearly
singular integrals in a similar fashion to meth-
ods developed for singular integrals [3]. We sub-
tract Kns the nearly singular behavior of the
kernel K appearing in (2) and write the solu-
tion, for all x ∈ R2 \D, as

u(x) =

∫
∂D

(K(x, y)−Kns(x, y))µ(y)dσy

+

∫
∂D

Kns(x, y)µ(y)dσy.

(5)

In (5) the first integral is smooth, and therefore
easier to approximate, whereas the second one
is evaluated analytically. Kns is found as a lin-
ear combination of the asymptotic expansions
of the single- and double-layer potentials. Let
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δ denote the separation distance between the
evaluation point x in R2 \D and the boundary
∂D: then x = y∗+δny∗ with y∗ ∈ ∂D. Defining

Y := y∗−y
δ , one can rewrite K as a non-uniform

expansionK(x, y) = K(δY, δ), thenKns is found
as the inner expansion of K(δY, δ) when Y →
0+. It is well-known that G has the same sin-
gular behavior as GL, the fundamental solution
of Laplace’s equation [5]:

G = GL + cst +O(δ2 log δ), (6)

with cst :=
i

4
− 1

2π

(
log

k

2
+ C

)
, and C denot-

ing Euler’s constant. Therefore, the leading or-
der of Kns can be found as the inner expansion
of KL := ∂nyG

L − ik(GL + cst), with

GL(δY, δ) = − 1

2π
log δ

− 1

4π
log(1 + |Y|2 − 2δnY∗ · Y),

(7)

∂nyG
L(δY, δ) = − 1

2πδ

nY · Y + nY · nY∗
1 + |Y|2 − 2nY∗ · Y

. (8)

Using the parametrization Y(t) =
y(t∗)− y(t)

δ
,

t, t∗ ∈ [0, 2π], one can express Kns as a rational
trigonometric function of the form

Kns(t, t∗; δ) =
A0 +A1 cos(t− t∗)
1 +B1 cos(t− t∗)

− ik (log(C0 + C1 cos(t− t∗)) +D) ,

(9)

where A0, A1, B1, C0, C1, D are constants,
in particular depending on δ and the curvature
of the boundary at y∗. The integral operator
with Kns can be computed spectrally using its
Fourier series representation [4]. We can then
compute (5) efficiently and accurately.
Results in Fig. 1 show a gain of at least 3 or-
ders of precision close to boundary. Electro-
static cases (k = 0) have shown a gain of at
least 6 orders. Since K ∼ KL is valid for k|x−y|
sufficiently small, we perform a subwavelength
correction (i.e. kδ � 1). A new scaling taking
into account k will be required to tackle high
frequency scattering problems [1].

3 Future works

These results show the advantage of incorporat-
ing asymptotic analysis into the numerical eval-
uation of near-fields. The asymptotic Nyström
method with sub-wavelength correction can be

Figure 1: Top left: real part of the solution of (2)

given by u(x) = i
4H

(1)
0 (k|x− x0|), with k = 5, x0 =

(−0.8, 0.2) ∈ D, with N = 300. Top right: error

(log-scale) with respect to δ for t∗ = 29
302π. Bottom:

Contour errors (log-scale) for (2) at the rectangle

indicated in the top left figure, using native Nyström

method (left), and the asymptotic Nyström method

(right).

improved further using the outer expansion of
K (i.e. Y→∞) and using a subtraction method
applied to the density µ [3]. Further details will
be given in [2]. Extensions to 3D configurations
will be considered, and we will apply these tech-
niques for Stokes problems and scattering prob-
lems in plasmonic structures.
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