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Abstract

We compute near fields using boundary integral
equation methods for 2D acoustic scattering by
an obstacle with an analytic boundary. Accu-
rate computation of near fields is needed for op-
tical scattering by nanostructures and for other
related problems. A classical method to approx-
imate the solution everywhere consists of using
the same quadrature rule (Nystrém method)
used to solve the underlying boundary integral
equation. It is established that this method in-
curs an O(1) error for a fixed number of quadra-
ture points. Our goal is, for a fixed number
of quadrature points and without using high-
order Nystrom methods, to develop a method
to address this O(1) error. Similar to numerical
method for approximating singular integrals, we
subtract from the associated kernel the asymp-
totic expansion that captures the nearly singu-
lar behavior.
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1 Problem setting

We consider the following scattering problem by
a sound-soft obstacle D C R? with 0D an ana-
lytic, closed curve:

Au+Kk*u=0 inR*\D, (la)
u=f ondD, (1b)
Oyu — iku = o(r~Y?), r— oo, (1c)

where k denotes the wavenumber and f is an
analytic function that gives the field incident on
the obstacle. The solution of (1) may be rep-
resented as a single- and double-layer potential
(see [5]): for all x € R2\D,

u(@) = [ [0,Gw9) - G ()] uly)der
oD (2)

The fundamental solution of (1a) is

Glay) = JHO Kle =y, (3)

where Hél) is the Hankel function of first kind,
and the density p satisfies the boundary integral
equation for all 3/ € 9D,

3400+ [ 0u,G0/ mntu)a,

@)

—ik [ G (o, = 1)
oD

Since 0D is a closed, analytic curve, and G ex-
hibits a log-singular behavior, (4) can be solved
numerically with spectral accuracy using Kress
Nystrom method [5, Chapter 12] (for Laplace
we consider the periodic trapezoid rule [1]). Us-
ing the same Nystrom method to evaluate (2)
incurs an O(1) error for points in R? \ D that
are close to dD. This is due to the fact that
the kernel K := 0,,G — tkG is nearly singu-
lar, in the sense that K is sharply peaked when
|z —y| — 0", and will not be well resolved for
fixed quadrature points. In fact, the error made
in evaluating (2) exhibits a boundary layer with
thickness O(1/N) where N is the number of
quadrature points, leading to a O(1) error as x
approaches 9D [1]. It is necessary to accurately
predict these near fields for optical scattering
by nanostructures, for instance in plasmonics.

2 Local analysis and numerical results

To address the O(1) error associated with the
near-field evaluation problem, we treat nearly
singular integrals in a similar fashion to meth-
ods developed for singular integrals [3]. We sub-
tract K™ the nearly singular behavior of the
kernel K appearing in (2) and write the solu-
tion, for all z € R?\ D, as

u(x) = / (K (2, 9) — K™ (2, y))u(y)doy
oD (5)

+ | K"(z,y)u(y)doy,.
oD

In (5) the first integral is smooth, and therefore
easier to approximate, whereas the second one
is evaluated analytically. K™ is found as a lin-
ear combination of the asymptotic expansions
of the single- and double-layer potentials. Let
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6 denote the separation distance between the
evaluation point z in R?\ D and the boundary
0D: then x = y* 4 dny with y* € 0D. Defining
Y := yiT_y, one can rewrite K as a non-uniform
expansion K (x,y) = K(0Y, ), then K™ is found
as the inner expansion of K(JY,d) when Y —
0T. It is well-known that G has the same sin-
gular behavior as G, the fundamental solution
of Laplace’s equation [5]:

G = G* 4 cst + O(6%log ), (6)

] 1
with cst == - — — log E + C' ), and C denot-
4 27 2

ing Euler’s constant. Therefore, the leading or-
der of K™ can be found as the inner expansion

of Kt := 0, G* — ik(G* + cst), with

GL(5Y,8) = ——log s
I log(1 + |Y|* — 20ny- - Y),

1 TLY'Y+’I’LY'le* (8)
276 1+ |Y|2 — 2ny» - Y

t*) — y(t
Using the parametrization Y(t) = M’

On, GZ(5Y,8) =

t,t* € [0,27], one can express K™ as a rational
trigonometric function of the form

K"S(t,4.6) = Ao + Aj cos(t — t)
1+ Bjcos(t — t*) (9)
— ik (log(Co + Cy cos(t —t*)) + D),

where Ag, A1, B1, Cy, C1, D are constants,
in particular depending on § and the curvature
of the boundary at y*. The integral operator
with K™ can be computed spectrally using its
Fourier series representation [4]. We can then
compute (5) efficiently and accurately.

Results in Fig. 1 show a gain of at least 3 or-
ders of precision close to boundary. Electro-
static cases (kK = 0) have shown a gain of at
least 6 orders. Since K ~ K is valid for k|z—y|
sufficiently small, we perform a subwavelength
correction (i.e. ké < 1). A new scaling taking
into account k will be required to tackle high
frequency scattering problems [1].

3 Future works

These results show the advantage of incorporat-
ing asymptotic analysis into the numerical eval-
uation of near-fields. The asymptotic Nystrom
method with sub-wavelength correction can be

r 10

——native Kress Nystrom
= = Asymptotic Nystrom

Figure 1: Top left: real part of the solution of (2)
given by u(z) = iHél)(k|x — Zpl|), with k =5, 2o =
(—0.8,0.2) € D, with N = 300. Top right: error
(log-scale) with respect to d for ¢t* = 2227, Bottom:
Contour errors (log-scale) for (2) at the rectangle
indicated in the top left figure, using native Nystrom
method (left), and the asymptotic Nystrom method

(right).

improved further using the outer expansion of
K (i.e. Y — 00) and using a subtraction method
applied to the density p [3]. Further details will
be given in [2]. Extensions to 3D configurations
will be considered, and we will apply these tech-
niques for Stokes problems and scattering prob-
lems in plasmonic structures.
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