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Curious energy losses at corners of metallic inclusions.
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Abstract

We consider a Transverse Magnetic time-har-
monic scattering problem. The scatterer is a
metallic object whose cross-section has corners
and whose permittivity is a function of the fre-
quency, typically given by Drude’s law. When
the dissipation effects in the metal are neglected,
it has been proved in [2] that there is a range of
frequencies where some energy is trapped by the
corners, due to the so-called plasmonic black-
hole waves. The purpose of this work is to
show that a similar phenomenon can be ob-
served when considering a realistic dissipative
metal, like silver.
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1 The scattering problem

For simplicity, let us suppose that the cross-
section Ω of the metallic scatterer has the shape
of a droplet (see figure 1), with a single corner,
located at the origin. The relative dielectric per-
mittivity in the metal obeys the following law,
known as the Drude’s model

εγ(ω) = 1−
ω2
p

ω2 + iωγ
, (1)

where ω > 0 is the pulsation, γ ≥ 0 (for a har-
monic regime in e−iωt) characterizes the dissi-
pative effects, and ωp > 0 is the plasma fre-
quency (for silver γ = 0.113 1015 Hz and ωp =
13.3 1015 Hz [1]). We are interested in a fre-
quency range ω < ωp below the plasma fre-
quency, where the real part of εγ(ω) is neg-
ative while its imaginary part is positive (see
figure 1). We consider the following scatter-
ing problem: find uγ = uinc + usca

γ such that
div
(
ε−1
γ ∇uγ

)
+ ω2c−2uγ = 0 in R2 and

lim
ξ→+∞

∫
|x|=ξ

∣∣∣∂usca
γ

∂r
− iωc−1usca

γ

∣∣∣2 dσ = 0,

Figure 1: Permittivity of silver and geometry

where uγ represents the transverse component
of the magnetic field, uinc is a plane wave, c
denotes the light speed and εγ is a function de-
fined by εγ = 1 in R2 \ Ω and εγ = εγ(ω) in
Ω.

For γ > 0, thanks to the imaginary part of
εγ(ω), one can prove with standard arguments
that this problem is well-posed in H1

loc(R2), and
if Γ is a circle enclosing the droplet, we have:

−=m
(∫

Γ

∂uγ
∂r

uγ

)
= =m

(
−1

εγ(ω)

)∫
Ω
|∇uγ |2.

This quantity, denoted in the sequel by Jγ(ω),
is strictly positive and corresponds to the en-
ergy dissipated during one time period in the
metallic inclusion.

2 The non-dissipative case γ = 0

If γ is small compared to ωp, there is a range of
frequencies between γ and ωp where it may be
relevant to neglect the dissipation in the metal
by taking γ = 0 (see figure 1). Then the per-
mittivity ε0 is a real-valued function, negative
in the metal and positive elsewhere. The well-
posedness of such a sign-changing transmission
problem has been extensively studied and the
results for the scattering problem depend on the
value of ω (see [2] for the details). If we denote
by Φ the angle at the corner, we define the fre-
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quency interval I(Φ) by the following property:

ω ∈ I(Φ)⇔ ε0(ω) ∈
]
−2π − Φ

Φ
,−1

[
.

If ω /∈ I(Φ), the scattering problem is well-
posed in H1

loc(R2) and there is no energy dis-
sipation (J0(ω) = 0). On the contrary, if ω ∈
I(Φ), the scattering problem is not well-posed
in H1

loc(R2). However the well-posedness can
be recovered in a different functional framework
[3]. The solution u0 (which is the limit of uγ
when γ → 0) may be very singular at the cor-
ner, it behaves like a exp(iκ log r) (in polar coor-
dinates) with κ ∈ R, where the constant a ∈ C
depends on the incident wave. When a 6= 0,
this so-called black-hole wave carries energy to-
wards the corner, which results in a dissipation
of energy (J0(ω) > 0), even if the dissipation in
the material has been neglected.

3 The slightly dissipative case

From a physical point of view, the relevance of
this strange phenomenon (dissipation of energy
in a non dissipative material) is discussed in the
literature [4]. Indeed one could suspect that
it is due to idealized non-realistic hypotheses,
like the perfect corner and the non dissipative
material (γ = 0). Our objective here is to show
that the phenomenon of leakage at the corner is
still present in a realistic dissipative material.

We have computed Jγ(ω) as a function of
ω for the case of silver for two different inci-
dences and for two inclusions, a droplet-shaped
one as described above, with an angle Φ = π/6,
while the second one has the shape of a disk.
For the comparison, the two shapes have the
same perimeter as losses are due to the plas-
monic surface wave propagating at the surface
of the metal (the wave does not propagate inside
the metal because the real part of ε and µ have
opposite signs). Obviously, for the disk, the two
incidences give the same result represented by
the black dashed curve. For the droplet, the
first incidence in red is such that the black-hole
wave is excited while it is not for the second
incidence in blue.

As expected, the energy losses for the droplet
are much larger than for the disk in the interval
I(Φ) when the black-hole wave is excited.

Let us mention that a refined mesh near the
interface would be necessary for the frequencies

at the right end of I(Φ), which correspond to
the almost ill-posed case <e(εγ(ω)) = −1.

Figure 2: Energy dissipation for a droplet and
a disk inclusions, for two directions of incidence

The computations are done with the code
Xlife++ [5].
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