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Abstract

We look for the electromagnetic guided modes in
a closed waveguide made of layers of materials
characterized by real permittivities of opposite
signs: we will consider a dielectric and a metal
at optical frequencies. Due to this sign-changing
permittivity, self-adjointness can be compromised.
However, under some conditions, it can be recov-
ered thanks to the T-coercivity approach. The
T-coercivity theory has been extensively devel-
oped for scalar problems with sign-changing co-
efficients, then extended to Maxwell 2D (no de-
pendence in one direction) and Maxwell 3D. We
extend these results to our case, referred to as
the 2.5D case. When self-adjointness is ensured,
with the adapted functional framework, and for
a chosen wavenumber, we can prove resolvent
compactness. Then we can derive error esti-
mates for the approximation of eigenvalues and
the guided modes using edge elements.

Keywords: Maxwell’s equations, sign-changing
permittivity, waveguide, T-coercivity, eigenvalue
approximation

1 Problem setting

Let a domain D := {(x, y, z) := (x, z) ∈ Ω× R}
of section Ω ⊂ R2, such that Ω := Ωd ∪ Ωm:
Ωd × R is a homogeneous domain of permittiv-
ity εd > 0, permeability µd > 0, and Ωm × R
a metal inclusion characterized by εm < 0, and
µm > 0. Assume that Ω is simply connected
with Lipschitz connected boundary, and define
the interface Σ := Ωd ∩ Ωm.
We look for the guided modes for the electro-
magnetic field (E,H), that is solutions of Maxwell’s
equations of the form:

(E,H)(x, z, t) = (E,H)(x)ei(βz−ωt), ω, β ∈ R,
(1)

where ω 6= 0 is the frequency, and β the axial
wavenumber. It is well-known that, in particu-
lar for the unknown H, using (1), we can reduce
the system into a 2D problem parametrized by
β that involves the three components of H. We
define new operators indexed by β (rotβ and
divβ) which are simply a rewriting of the classi-
cal operators taking into account (1). Then we
get:∣∣∣∣∣∣∣∣∣∣

Find H ∈W(Ω) such that:

rotβ

(
1

ε
rotβH

)
− ω2µH = 0 in Ω

1

ε
rotβH× n = 0 on ∂Ω

(2)

with n the unit outward normal of Ω, ε and µ
two piece-wise constant functions gathering the
permittivity and the permeability of the two ma-

terials. Finally for all F := (
−→
F⊥, Fz)

t define

W(Ω) = {F/
−→
F⊥ ∈

−→
H (rot; Ω), Fz ∈ H1(Ω)}

where
−→
H (rot; Ω) := {

−→
F⊥ := (Fx, Fy)

t ∈ L2(Ω)2/ rot
−→
F⊥ :=

∂xFy−∂yFx ∈ L2(Ω)}. One can show that a so-
lution H of (2) also satisfies the conditions

µH · n = 0 on ∂Ω, divβ(µH) = 0 in Ω. (3)

To look for the guided modes, we interpret Prob-
lem (2) as an eigenvalue problem: for a chosen
β ∈ R, find (H, ω2) ∈ W(Ω) \ {0} × C satisfy-
ing (2). Since ε is sign-changing, well-posedness
for the forward problem (that is (2) with some
data at the right-hand side) is not automatically
guaranteed. First we need to ensure existence
and uniqueness of this forward problem then,
when it is satisfied, we can study the eigenprob-
lem, and tackle the approximation of the eigen-
values.
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2 Self-adjointness

As W(Ω) is not compactly embedded in L2(Ω),
we will work in a subspace that takes into ac-
count the divergence free condition (3):

VT (β;µ; Ω) = {F ∈W(Ω)/

µF · n = 0 ∂Ω, divβ(µF) = 0 Ω},

and which is compactly embedded in L2(Ω). We
can prove that solving (2) is equivalent to:∣∣∣∣∣∣∣

Find H = (
−→
H⊥, Hz)

t ∈ VT (β;µ; Ω) such that:

a(H,H′) + c(β; H,H′) = ω2(µH,H′)

∀H′ ∈ VT (β;µ; Ω),
(4)

with

a(H,H′) := a⊥(
−→
H⊥,
−→
H⊥
′) + az(Hz, H

′
z)

=

∫
Ω

1

ε
rot
−→
H⊥rot

−→
H ′⊥ +

∫
Ω

1

ε
∇Hz · ∇H ′z,

c(β; H,H′) := iβ

∫
Ω

1

ε

(
∇Hz ·

−→
H ′⊥ −

−→
H⊥ · ∇H ′z

)
+ β2

∫
Ω

1

ε

−→
H⊥ ·

−→
H ′⊥.

Note that for β 6= 0, the functional framework
and the compact part c(β; ·, ·) depend on β, then

we cannot decouple
−→
H⊥ from Hz and rewrite (4)

into two problems. Due to the sign-changing
permittivity, the form a is not coercive. Be-
sides, coercivity can be recovered under some
conditions on the ratio εd/εm and the geometry
of Σ, via the T-coercivity approach. Particu-
larly it tells us that (4) (with some data at the
right-hand side) is of Fredholm type if and only
if there exists an isomorphism T of VT (β;µ; Ω)
such that a(·, T·) is coercive, and c(β; ·, ·) is com-
pact. As mentioned above, this theory has been
developed for instance in [1, 2] providing ad hoc
operators T (explicit for scalar problems, ab-
stract for Maxwell’s). In that case, it has been
proved that the form a⊥ is in fact coercive for
any value of ε < 0, while we recover coercivity
for the form az under some conditions.
For the 2.5D case, we extend the results coupling
those from scalar and Maxwell’s problems. As
we cannot decouple the components of H, the
construction of the operator T now involves an
operator Tz from the scalar problem, an opera-
tor T⊥ from Maxwell 2D problems, and we add

to T⊥ a potential solution of an elliptic problem
whose right-hand side depends on Tz and β.
With the Riesz representation we introduce the
operator A(β) ∈ L(VT (β;µ; Ω)) associated to
the form a(·, ·) + c(β; ·, ·). Once we have proved
that the forward problem is of Fredholm type,
we can prove that A(β) is self-adjoint and has
compact resolvent, so that its spectrum is com-
posed of a sequence of positive and negative eigen-
values.

3 Approximation of the guided modes

Finally, following [5], and in the spirit of [4]
we can provide error estimates for the approx-
imation of the eigenvalues using edge elements.
To do so, we first have to state compactness of
the discrete operators and norm convergence to-
wardsA(β): this requires to transpose T-coercivity
to the discrete problem and some conditions on
the mesh [3].
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