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Abstract

We study a 2D dielectric cavity with a metal in-
clusion. The permittivity ε of the metal depends on
the frequency ω and, in a given frequency range, the
metal can be (almost) dissipationless (|Im(ε(ω))| �
|Re(ε(ω))|) and such that Re(ε(ω)) < 0. We look
for the cavity resonance values ω. Due to the de-
pendence of ε with respect to ω, this is a non li-
near eigenvalue problem. Below we consider mainly
the linearized-problem where this dependence is fro-
zen. Under some conditions on ε and the inclusion’s
geometry, the linearized-problem principal operator
is self-adjoint with compact resolvent. Besides when
the inclusion has corners adding to the fact that ε is
sign changing at the boundaries between the metal
and the dielectric, self-adjointness and compactness
of the resolvent may be no longer true. This is due
to very singular phenomena at the corners, which re-
quire a new functional framework for the theoretical
analysis, and a specific numerical treatment. The non
linear case which requires a fixed point algorithm is
briefly discussed.
Introduction

Let’s consider a cavity Ω, Ω = Ω1∪Ω2, with a die-
lectric material Ω1, and a metal inclusion Ω2. Let’s
call the interface Σ = Ω1 ∩ Ω2. We study the follo-
wing eigenvalue problem :

(1)


Find u 6= 0, ω ∈ R s.t. :

−div( 1
ε(ω)∇u) = ω2µ(ω)u in Ω

u = 0 on ∂Ω

where the electric permittivity ε(ω) is a non linear
real valued function of the frequency ω.
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Figure 1: : Examples of a cavity. The configuration
b) will provide support for numerical illustrations.

For simplicity we consider the linearized eigenva-
lue problem in ω, which consists in replacing ε(ω)

by ε in (1) and, we focus our attention on the case
where ε < 0 in the inclusion. More precisely, we take
ε and µ piecewise constant functions, µ > 0 almost
everywhere and ε sign changing at the interface Σ.
Let’s define the principal operator :

A : D(A) ⊂ L2(Ω) −→ L2(Ω)
u 7→ − 1

µdiv(1
ε∇u) with

D(A) = {u ∈ H1
0 (Ω), 1

µdiv(1
ε∇u) ∈ L2(Ω)} and

consider the weighted L2 inner product (u, v) 7−→∫
Ω µuv dΩ. Thus our goal is to find the eigenvalues of
A. For a given ε and depending on the interface Σ,
the operator A can be self-adjoint or not. The next
part is dedicated to solving the self-adjoint case, the
one after that to solving the non self-adjoint case.
We also present some computations in each section,
with a specific numerical treatment in the second one
because of particular phenomena near the corners.

1 The self-adjoint case

When ε > 0 almost everywhere, the operator A is
self-adjoint with compact resolvent (noted for simpli-
city SC. in the rest of the paper). The eigenvalues are
positive with finite multiplicity and tend to infinity.

When ε changes sign, one can still have SC. pro-
perties for A under some conditions on ε and the
interface Σ (precised below)[1], [2] : the eigenvalues
then consist in two sequences of real numbers with
finite multiplicity tending respectively to ±∞ (see
fig.5a).

For a regular interface Σ (fig.1a), A is SC. if and

only if
ε|Ω2
ε|Ω1
6= −1. When Σ has corners (fig.1b), the

operator is SC. if and only if
ε|Ω2
ε|Ω1

doesn’t belong to a

critical interval containing −1, which is determined
by the sharpest corner of the interface.

In this case, we have made computations with stan-
dard Finite Element for the geometry fig.1b. We ob-
serve stability of the results with respect to the mesh
size (see fig.2). In fig.3 we observe that the modes are
confined outside or inside the metal inclusion depen-
ding on the eigenvalues’ sign.



Nodes 3469 7325 32049 132001

1st ev > 0 1.4836 1.4837 1.4807 1.4805

1st ev < 0 -4.083 -4.0771 -4.0762 -4.0758

Figure 2: : First positive and negative eigenvalues (of
smallest modulus) for several mesh sizes.

Figure 3: : First positive (left) and negative (right)
modes of the SC. operator, associated to the two pre-
vious eigenvalues.

2 The non self-adjoint case

For
ε|Ω2
ε|Ω1

chosen in the critical interval (excluding

ε|Ω2
ε|Ω1

= −1), due to singular phenomena at the cor-

ners, the SC. properties of A are no longer satisfied in
the classical functional framework. In this case, the
spectrum of A is the whole complex plane.

In [2], [3] (see also [4]) is given an extension of the
operator A which has a compact resolvent, called A+.
It is defined by D(A+) = D(A)⊕span{s+

1 , · · · , s
+
k } ⊂

L2(Ω), where s+
1 , · · · , s

+
k , k ∈ N are singular func-

tions at k corners (k 6 total corners’ number of the
interface Σ) that don’t belong to H1. These singula-
rities, selected by a limiting absorption principle (see
[3]), can be interpreted as waves propagating along
the interface Σ towards the k corners : they are called
black-hole plasmonic waves.

Numerically, there is no Finite Element conver-
gence due to these black-hole waves. Thus, in order
to capture confined plasmonics waves near the cor-
ners, a specific numerical treatment is performed. We
operate an original use of PMLs (Perfectly Matched
Layers) : by the Euler change of variables (r, θ) 7−→
(log(r), θ) we transform a disk centered at a cor-
ner into a waveguide [2] which we can troncate with
PMLs. The PMLs domain corresponds to the small
hole at the corner in fig.4. Numerical results confirm
that the PMLs’ method is efficient to ensure the sta-
bility of the Finite Element approximation. The A+’s
spectrum contains complex eigenvalues which clearly
proves its non self-adjointness. We can prove that the
eigenvalues belong to {z ∈ C s.t. Im(z) ≤ 0}, which
is numerically almost satisfied (see fig.5b).

Figure 4: : Third and fifth modes of operator A+

(associated to the smallest eigenvalues in modulus :
λ3 = 3.7426 − 1.0046i and λ5 = 5.0821 − 1.1043 ×
10−3i).

(a) (b)

Figure 5: : (a) Spectrum of the SC. operator in the
complex plane. (b) Spectrum of operator A+ in the
complex plane. (The scales are different.)

3 Conclusion/Ongoing work

Once we are able to understand the linearized ei-
genvalue problem, we could solve in principle our
starting non linear problem (1). The cavity modes
could be obtained for instance with a fixed point al-
gorithm.
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